Interactions between Sox9 and -catenin control chondrocyte differentiation

نویسندگان

  • Haruhiko Akiyama
  • Jon P. Lyons
  • Yuko Mori-Akiyama
  • Xiaohong Yang
  • Ren Zhang
  • Zhaoping Zhang
  • Jian Min Deng
  • Makoto M. Taketo
  • Takashi Nakamura
  • Richard R. Behringer
  • Pierre D. McCrea
  • Benoit de Crombrugghe
چکیده

Chondrogenesis is a multistep process that is essential for endochondral bone formation. Previous results have indicated a role for -catenin and Wnt signaling in this pathway. Here we show the existence of physical and functional interactions between -catenin and Sox9, a transcription factor that is required in successive steps of chondrogenesis. In vivo, either overexpression of Sox9 or inactivation of -catenin in chondrocytes of mouse embryos produces a similar phenotype of dwarfism with decreased chondrocyte proliferation, delayed hypertrophic chondrocyte differentiation, and endochondral bone formation. Furthermore, either inactivation of Sox9 or stabilization of -catenin in chondrocytes also produces a similar phenotype of severe chondrodysplasia. Sox9 markedly inhibits activation of -catenin-dependent promoters and stimulates degradation of -catenin by the ubiquitination/proteasome pathway. Likewise, Sox9 inhibits -catenin-mediated secondary axis induction in Xenopus embryos. -Catenin physically interacts through its Armadillo repeats with the C-terminal transactivation domain of Sox9. We hypothesize that the inhibitory activity of Sox9 is caused by its ability to compete with Tcf/Lef for binding to -catenin, followed by degradation of -catenin. Our results strongly suggest that chondrogenesis is controlled by interactions between Sox9 and the Wnt/ -catenin signaling pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repressing of SOX6 and SOX9 in Situ Chondrogenic Differentiation of Rat Bone Marrow Stromal Cells

Introduction: SOX9 is a transcriptional activator which is necessary for chondrogenesis. SOX6 are closely related to DNA-binding proteins that critically enhance its function. Therefore, to carry out the growth plate chondrocyte differentiation program, SOX9 and SOX6 collaborate genomewide. Chondrocyte differentiation is also known to be promoted by glucocorticoids through unknown molecular mec...

متن کامل

Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes.

The transcription factor Sox9 is necessary for early chondrogenesis, but its subsequent roles in the cartilage growth plate, a highly specialized structure that drives skeletal growth and endochondral ossification, remain unclear. Using a doxycycline-inducible Cre transgene and Sox9 conditional null alleles in the mouse, we show that Sox9 is required to maintain chondrocyte columnar proliferati...

متن کامل

The Signaling Pathways Involved in Chondrocyte Differentiation and Hypertrophic Differentiation

Chondrocytes communicate with each other mainly via diffusible signals rather than direct cell-to-cell contact. The chondrogenic differentiation of mesenchymal stem cells (MSCs) is well regulated by the interactions of varieties of growth factors, cytokines, and signaling molecules. A number of critical signaling molecules have been identified to regulate the differentiation of chondrocyte from...

متن کامل

GSK-3α and GSK-3β proteins are involved in early stages of chondrocyte differentiation with functional redundancy through RelA protein phosphorylation.

Here we examine the roles of two isoforms of glycogen synthase kinase-3 (GSK-3), GSK-3α and GSK-3β, in skeletal development. Both isoforms were unphosphorylated and active in chondrocyte differentiation stages during SOX9 and type II collagen (COL2A1) expression. Although knock-out of both alleles of Gsk3a (Gsk3a(-/-)) or a single allele of Gsk3b (Gsk3b(+/-)) in mice did not significantly affec...

متن کامل

Sox9 sustains chondrocyte survival and hypertrophy in part through Pik3ca-Akt pathways.

During endochondral bone formation, Sox9 expression starts in mesenchymal progenitors, continues in the round and flat chondrocyte stages at high levels, and ceases just prior to the hypertrophic chondrocyte stage. Sox9 is important in mesenchymal progenitors for their differentiation into chondrocytes, but its functions post-differentiation have not been determined. To investigate Sox9 functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004